

MEASURING MESSENGERS: ANALYZING INFRASTRUCTURES AND MESSAGE TIMINGS TO EXTRACT USER LOCATIONS IN INSTANT MESSENGERS

LASER 2023 | Learning from Authoritative Security Experiment Results San Diego, CA, USA | March 03, 2023

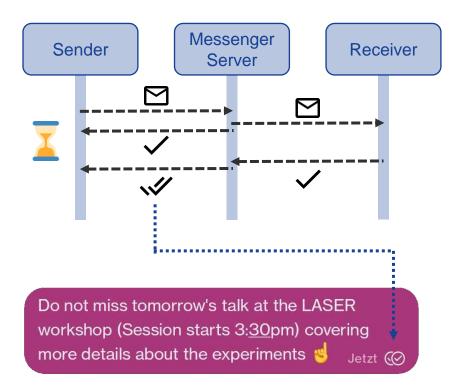
<u>Theodor Schnitzler</u> Research Center Trustworthy Data Science and Security, Germany theodor.schnitzler@tu-dortmund.de

NDSS 2023 PUBLICATION

Hope of Delivery: Extracting User Locations From Mobile Instant Messengers

Theodor Schnitzler^{*†}, Katharina Kohls[‡], Evangelos Bitsikas^{§¶}, and Christina Pöpper[¶]
*Research Center Trustworthy Data Science and Security, TU Dortmund, Germany [†]Ruhr-Universität Bochum, Germany [‡]Radboud University, Netherlands [§]Northeastern University, USA [¶]New York University Abu Dhabi, UAE theodor.schnitzler@tu-dortmund.de kkohls@cs.ru.nl bitsikas.e@northeastern.edu christina.poepper@nyu.edu

Abstract—Mobile instant messengers such as WhatsApp use delivery status notifications in order to inform users if a sent message has successfully reached its destination. This is useful and important information for the sender due to the often asynchronous use of the messenger service. However, as we demonstrate in this paper, this standard feature opens up a timing side channel with unexpected consequences for user location privacy. We investigate this threat conceptually and experimentally for three widely spread instant messengers. We validate that this information leak even exists in privacy-friendly messengers such as Signal and Threema. being in transit, processed and forwarded by the messenger server, to delivered to the recipient, and (if enabled) read by the recipient [2], often indicated by small symbols such as checkmarks. This is helpful information for users to track if a message has successfully reached its destination.


However, as we will demonstrate in our paper, this feature can also serve as a side channel that allows to learn sensitive information about message recipients, such as revealing information about their current whereabouts, with undesired potential harm to location privacy.

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

2 Theodor Schnitzler LASER 2023 | San Diego, CA, USA | March 03, 2023

PROBLEM STATEMENT

Scenario

Sender: San Diego Server: Los Angeles

Receiver: San Diego Bochum

c = 299792458 m/s $v_{Internet} \leq \frac{2}{3} c$

RTT \geq 660 km \geq 3.30 ms $> 9200 \,\mathrm{km} \geq 46.03 \,\mathrm{ms}$

Side Channel

 $2 * dist_{e2e}$

Time for delivery confirmation reveals information about the receiver's location

Does this work in practice?

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

3 Theodor Schnitzler LASER 2023 | San Diego, CA, USA | March 03, 2023

NDSS RECAP

DATA COLLECTION

Round 1

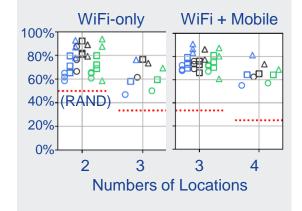
- Fixed Locations
- WiFi-only ?
- (Mostly) country-level

Round 2 (Germany + UAE)

- Local setups at city-area-level
- Rotating devices through locations
- WiFi + mobile data 🗢 (x)



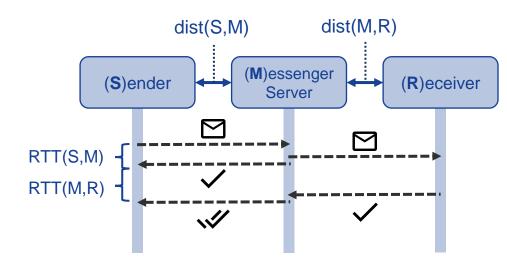
Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers


4 Theodor Schnitzler

NDSS RECAP

RESULTS OVERVIEW

Device-at-Location (R2)


Network Connection (R2)

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

5 Theodor Schnitzler

MEASURING MESSENGERS

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

6 Theodor Schnitzler LASER 2023 | San Diego, CA, USA | March 03, 2023

MESSENGER SERVER LOCATIONS

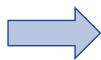
- No information provided
- Sources indicate AWS
 US-East (Ashburn, VA)

AWS EC2 North Virginia outage resolves but some issues linger

UPDATE: Signal falls over while Xero and Nest got a bit iffy when the main AWS EC2 region had degraded performance. Amazon Web Service says all is well but some users are still reporting trouble.

[zdnet.com]

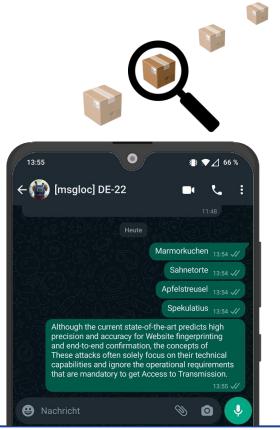
 Servers located in Zurich area, CH


Where are the servers located?

Threema GmbH runs its own servers in two highsecurity data centers of an "ISO 27001"-certified colocation partner in the Zurich area (Switzerland). [threema.ch]

- No specific information
- Meta Data Centers (datacenter.fb.com)

?



Analyze Phone's Network Traffic to verify and/or aggregate more information

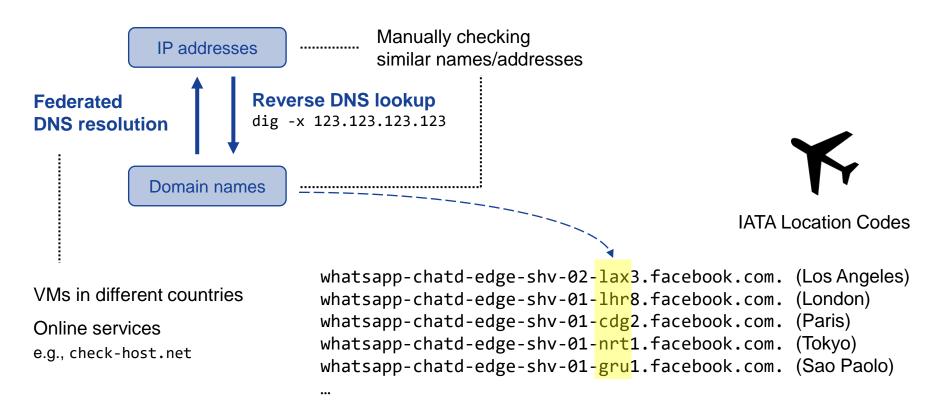
Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

7 Theodor Schnitzler

HOW TO ANALYZE NETWORK TRAFFIC ON ANDROID?

Packet Capturing

- tPacketCapture app
- Uses Android's VPN mechanism
- Monitor and collect (encrypted) traffic
- No root required


PCAP Analysis

	2121_10_05_231631.pce				-	
Cvr	tei Bearbeiten Ans	cht Navigation Aufoni	cheen Analyse Statistik	in Telephon	a Windows Tools Haffe	
1	H K @ 55		TICCAQ	8.0		
	9.809 ++ 157.248.218.6					
844.	True	Sauce	Contration	Putrol	Level 10	
	118 32,157177	18.8.8.1	157.208.218.61	551	1979 1997 1997 1997 1997 1997 1997 1997	
	111 32,137315	157,248,218,61	18.8.8.1	707	54 443 + 41106 [ACK] Sequel09 Adv-452 Win-05555 Len-0	
	112 32.137595	10.8.0.1	117.209.218.41	551	282 Centiumities Bells	
	115 52.157729	157,248,218,61	10.0.0.1	102	54 443 = 42166 [ACC] 5eq+609 Adv+050 UE++05355 Le++0	
	114 32.191915	157,248,218,61	18.8.9.1	555	12) Certinutice Orta	
	115 32.242378	10.5.0.1	157,249,218,61	TCP	54 41108 = 443 (ACK) Securit@ Ack=078 Win=05335 Len=0	
	116 33,388774	157,248,218,61	18.8.9.1	555	15 Continuation Data	
	117 33,420030	10.0.0.1	117.200.210.61	102	54 43106 443 [ACC] 5egr458 Adx+740 WEx+05555 Lex+0	
	110 33,439149	10.0.0.1	157,240,210,61	551	12	
	119 33,439499	157,248,218,61	10.0.0.1	TCP	5 443 = 41286 TACKI Sep-740 Ack=633 With=05535 Lem-0	
	120 33 430545	10.0.0.1	157, 249, 210, 61	551	102 Continuation Data	
	121 33,430636	157.248.219.61	18.0.0.1	TCP	54 443 = 41100 [ACK] 5eg-740 Ack-655 Win-65535 Len-0	
	122 43.009021	10.0.0.1	157,200,210,61	551	5	
	123 43,000919	157,248,218,61	10.0.0.1	TCP	50 443 - 01106 [ACK] Seq-700 ACK-600 UIN-65555 Les-0	
	124 43.041073	19.8.9.1	157,209,218,61	551	282 Costinuation data	
	125 43.041354	157,248,218,61	38.8.9.1	708	58 441 = 45106 [ACC] Seq-768 ACK-837 Win-65535 Len-8	
	126 43.875821	157,248.218.61	10.8.0.1	551	127 Catinuitie Bata	
	127 43.124548	10.8.0.1	157.248.218.41	TOP	54 41100 = 443 [ACK] Sep-837 Ack-800 Wim-85535 Lem-0	
	125 41.251989	157.240.210.61	18.8.8.1	555	10 Cestinution Data	
	129 41.114112	10.0.0.1	117,209,210,41	707	54 41108 = 443 [ACK] 5eg=837 Ack=871 Win=85535 Len=#	
	150 43.354428	10.6.0.1	157,249,210,61	551	52	
	131 43.334658	157,248,218,61	18.6.9.1	TCP	54 443 = 41286 [ADX] Sep-871 Adx-048 Wim-05535 Lem-8	
	132 43.334683	10.6.0.1	157,240,210,61	551	187 Centinuation Data	
	133 43.334764	157,248,219,61	10.0.0.1	TCP	54 443 = 41100 [ACK] 5eg-471 Ack-000 Win-05535 Len-0	
	134 54,873943	10.0.0.1	157.240.210.61	551	D	
	135 54,874319	157,248,218,61	10.0.0.1	TCP	54 44) = 41206 [ACK] Sec-871 Ack-806 WIR-65535 Let-0	
	136 54,874487	19.9.9.1	157,249,210,61	SSL	282 Continuation Data	
	137 54,074549	\$57,248,259,65	34.0.0.5	TCP	54 44) = 45106 [ACC] 540-871 ACK-1044 V51-65535 Lat-0	
	138 54.187030	157,248.218.61	10.0.0.1	551	122 Continuation data	
	139 54.159631	10.8.0.1	157.208.218.61	TCP	54 41105 - 443 [ACC] Seq-1848 ACk-948 Win+65535 Len=0	
	148 51.055688	157.248.218.61	10.8.0.1	551	116 Cestimutice Data	
	141 54.566823	10.8.0.1	157.208.218.61	707	54 41105 - 443 [ACK] 560-3848 A(k-1882 W(x-05535 Le+-8	
	142 54.540101	10.8.0.1	157.240.210.01	551.	57	
	143 54.546358	157,248,219,61	18.8.9.1	TOP	54 443 = 41200 [ACX] 550-3002 ACX-3047 Win+05555 Len+0	

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

8 Theodor Schnitzler

FEDERATED ANALYSIS OF MESSENGER SERVERS

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

9 Theodor Schnitzler

LOCATION PLAUSIBILITY CHECK

Information Aggregation

Federated Pings

whatsapp-chatd-ed	ge-shv-01	-cdg2.facebook	.com.			Test
LOCATION	REQ	MIN	MAX	AVG	STD DEV	LOSS
Frankfurt	3	8.79 ms	8.83 ms	8.82 ms	0.02 ms	0%
Amsterdam	3	13.19 ms	14.18 ms	13.53 ms	0.46 ms	0%
London 179.60.192.49	3	16.21 ms	16.93 ms	16.49 ms	0.31 ms	0%
New York	3	76.96 ms	77.89 ms	77.32 ms	0.4 ms	0%
Dallas	3	112.52 ms	112.6 ms	112.56 ms	0.03 ms	0%
San Francisco	3	148.9 ms	149.38 ms	149.09 ms	0.2 ms	0%
C Singapore	3	164.78 ms	165.79 ms	165.13 ms	0.47 ms	0%
Sydney 179.60.192.49	3	235.84 ms	235.86 ms	235.85 ms	0.01 ms	0%
• Tokyo 179.60.192.49	3	232.98 ms	233.09 ms	233.04 ms	0.05 ms	0%
Bangalore 179.60.192.49	3	169.96 ms	170.87 ms	170.27 ms	0.42 ms	[%] ng]

Timings and Distances

- Calculate distances between location claim and probe locations
- Compare orders
- Compare transmission speeds
- No formal verification

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

10 Theodor Schnitzler

MESSENGER SERVERS AND LOCATIONS

2 IPv4, both the same domain name

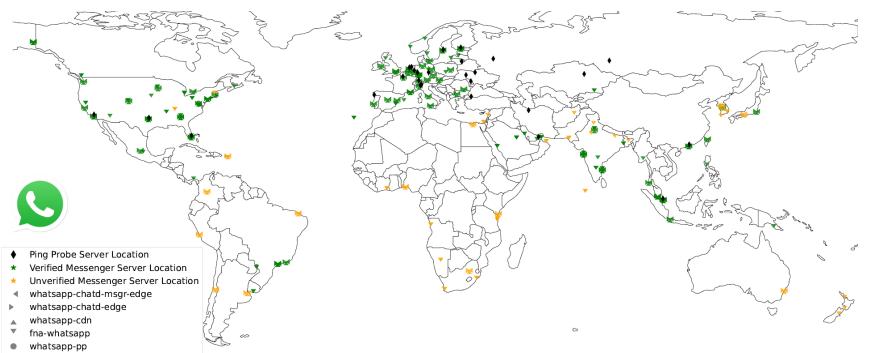
textsecure-service.whispersystems.org
76.223.92.165 13.248.212.111
ac88393aca5853df7.awsglobalaccelerator.com.

- Pings < 3ms from each location</p>
- Additional traceroutes from Europe point towards the US (East Coast)
- No certainty

11 consecutive IPv4 addresses

msgapi.threema.ch
 185.88.236.xxx
currently no response

- Pings quite plausible
 - Frankfurt (DE) Zurich: 300 km
 - Milan (IT) Zurich: 220 km
 - Linear distance vs. Topology
 - Connectivity differences

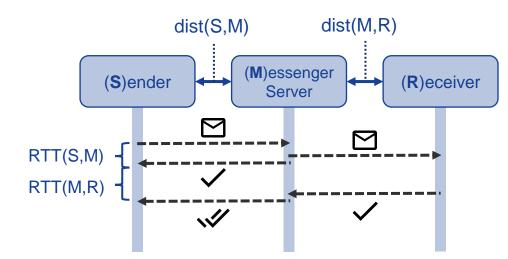


Zurich/CH

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

11 Theodor Schnitzler

MESSENGER SERVERS AND LOCATIONS



5 domain namespaces, 409 total domains / IPv4, 142 different locations (US/EU mostly plausible)

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

12 Theodor Schnitzler

MEASURING MESSENGERS

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

13 Theodor Schnitzler

ANDROID DEBUG BRIDGE

Android Device

← Developer options	
w	
Allow USB debugging?	
USB debugging is intended for development purposes only. Use it to copy data between your computer and your device, install apps on your device without notification and read log data.	
Cancel OK	
Select mock location app Mock location app not set	

Controller (Laptop)

 Install ADB and start ADB server instance apt-get install android-tools-adb adb start-server

Send commands to phone

(confirm prompt on phone upon sending the first command)

Wake up phone

adb shell input keyevent KEYCODE_WAKEUP

Start App

adb shell am start -n
jp.co.taosoftware.android.packetcapture/.PacketCaptureActivity

Interact with UI

adb shell input tap <x> <y> adb shell input swipe <x1> <y1> <x2> <y2>

[https://developer.android.com/studio/command-line/adb]

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

NO ROOT

REQUIRED

14 Theodor Schnitzler

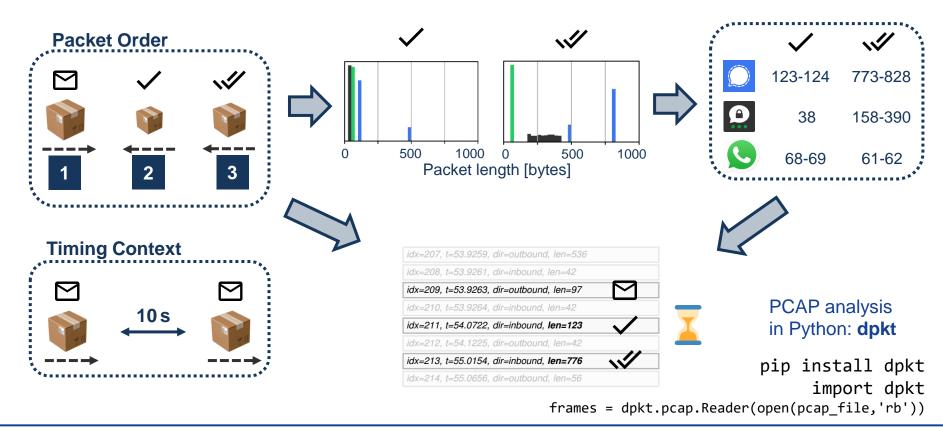
NDSS RECAP

MEASUREMENT SETUP

Sending Messages

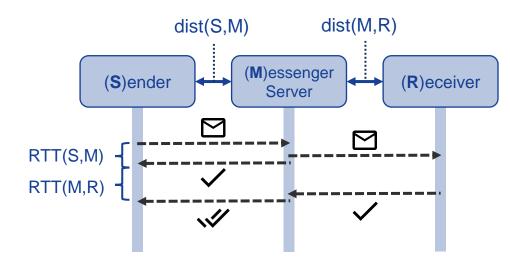
- Iterate through messengers + receivers
- Capture network traffic on the phone
 - Open chat + send messages
 - 5 messages, 10s pause
- Continuously repeated (CronJob)

Receiving Messages



Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

15 Theodor Schnitzler


MESSAGES AND CONFIRMATIONS IN NETWORK TRAFFIC

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

16 Theodor Schnitzler

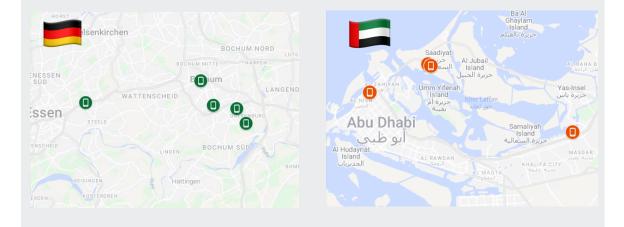
MEASURING MESSENGERS

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

17 Theodor Schnitzler

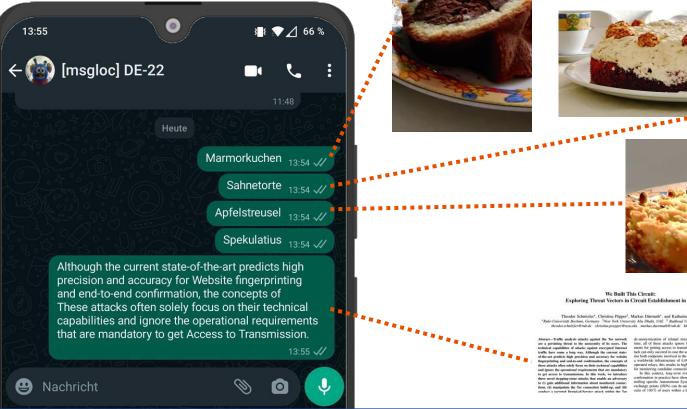
NDSS RECAP

DATA COLLECTION


Round 1

- Fixed Locations
- WiFi-only ?
- (Mostly) country-level

Round 2 (Germany + UAE)

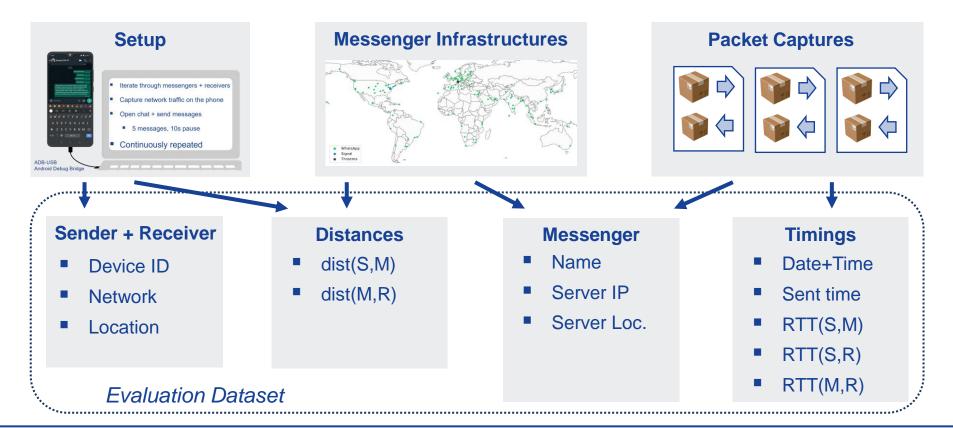

- Local setups at city-area-level
- Rotating devices through locations
- WiFi + mobile data 🗢 (A)

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

18 Theodor Schnitzler

MESSAGE CONTENTS

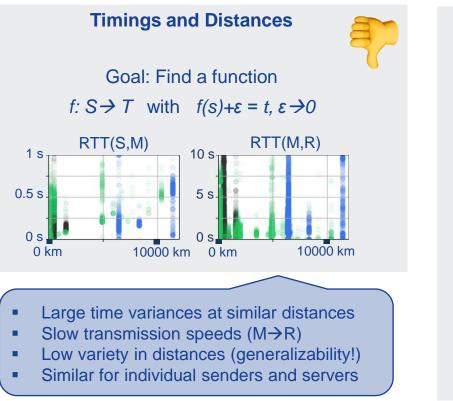
We Built This Circuit: Exploring Threat Vectors in Circuit Establishment in Tor

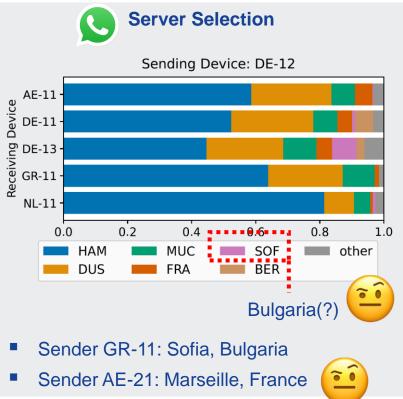

Theodor Schnitzler*, Christina Pöpper¹, Markus Dürmuth*, and Katharina Kohls¹ Ruhr-Universität Bochum, Germany ¹New York University Abu Dhabi, UAE ¹ Radboud University, Netherlands theodor.schnittler@ruh.de_christina.poemer@nyu.edu_markux.duermuth@ruh.de_kkohls@cx.ru.nl

struct-Traffic analysis attacks against the Tor network de-anonymization of related streams [31]. At the same are a persisting threat to the anonymity of its users. The time, all of these attacks ignore the operational require-ments for getting access to transmissions. That is, the at-tack can only succeed in case the adversary is able to moncapabilities of attacks against encrypted Internet traffic have come a long way. Although the current stateof-the-art predicts high precision and accuracy for website fingerprinting and end-to-end confirmation, the concepts of itor both endpoints involved in the connection. As Tor has a worldwide infrastructure of 6,000 to 7,000 voluntarily operated relays, this results in high resource requirements these attacks often solely focus on their technical capabilities and ignore the operational requirements that are mandatory for monitoring candidate connections or nodes [33], [38] In this context, long-term evaluations of end-to-end to get access to transmissions. In this work, we introduce three novel stepping-stone attacks that enable an adversary confirmation in practice have shown that adversaries controlling specific Autonomous Systems (ASes) or Interne exchange points (IXPs) can de-anonymize individual cir to (i) gain additional information about monitored connect tions, (ii) manipulate the Tor connection build-up, and (iii) cuits of 100% of users within a three-month period [23] undert a tareeted Denial of Service attack within the Tor

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

19 Theodor Schnitzler

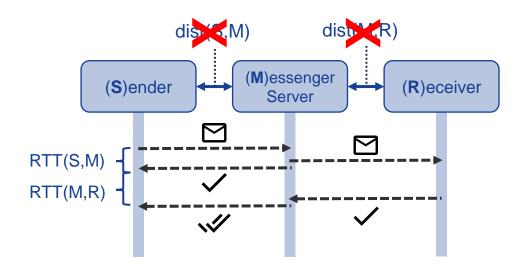

DATA PREPARATION



Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

20 Theodor Schnitzler

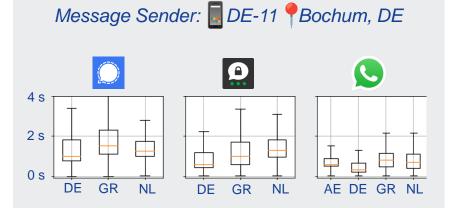
ANALYSIS OF TIMINGS AND DISTANCES



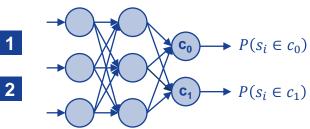
Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

21 Theodor Schnitzler

MEASURING MESSENGERS



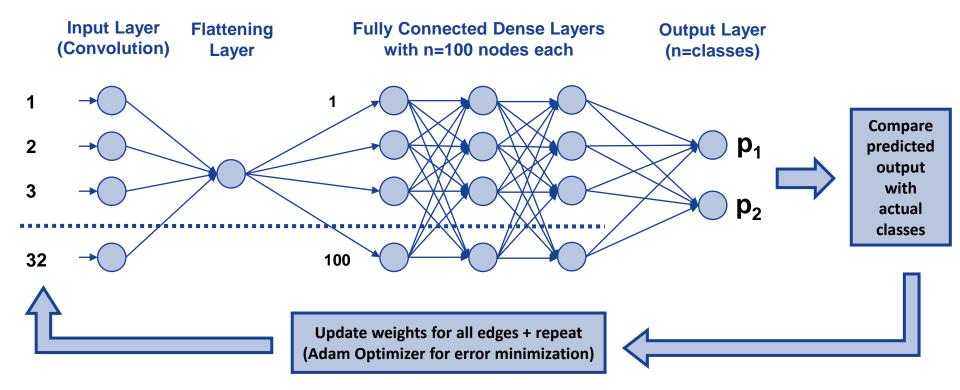
Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers


22 Theodor Schnitzler

ANALYSIS OF TIMINGS AND RECEIVER LOCATIONS

Timing Distributions

	RTT	(M,R)	of 5	mess	ages					
s	RTT ₁ (M,R)	RTT ₂ (M,R)	RTT₃(M,R)	RTT ₄ (M,R)	RTT₅(M,R)	c	~			
s0	0.161045	0.367807	0.189508	0.133215	1.086010	1				
s1	0.139126	0.263945	0.208273	0.318427	1.050682	0				
s2	0.116070	0.959320	0.371446	0.075188	0.972167	0				
s3	0.588105	0.432598	0.116624	0.217052	0.882888	0				
s4	0.352139	0.093173	0.207296	0.184161	0.847522	0				
s5	0.888563	0.149882	0.209223	0.175710	0.238975	1				
s6	0.321202	0.267288	0.204692	0.152205	0.972913	1				80% data
s7	0.211452	0.156785	0.421123	0.165585	1.115668	0		>	1	
s8	0.320205	0.650930	0.125180	0.784062	0.125119	0		(-	for training
s9	0.155052	0.177442	0.148592	0.078013	0.822601	1				5
s10	0.181755	0.196456	0.156299	0.203927	0.991780	0				
s11	0.174066	0.307921	0.226345	0.322114	0.949903	1				
s12	0.225167	0.150083	0.128277	0.178671	1.010559	0				
s13	0.128531	0.217139	0.133994	0.269631	0.778859	1				
s14	0.120790	1.006174	0.199258	0.094544	1.823422	0	ノ			
s15	0.223729	0.199927	0.216786	0.145953	0.912231	1				
s16	0.151150	0.182758	0.119122	0.197469	1.011616	1				20% data
s17	0.228764	0.313403	0.213551	0.427457	0.940652	1		≻	2	
s18	0.146101	0.182869	0.213168	0.201455	0.842262	1				for testing
s19	0.565934	0.404749	0.526175	0.218871	1.288376	0	J			0



Classification Assign newly measured RTTs a location based on previously observed data

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

23 Theodor Schnitzler

NEURAL NETWORK ARCHITECTURE

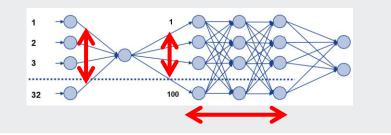
Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

24 Theodor Schnitzler

NEURAL NETWORK IMPLEMENTATION

ML framework for Python (and other languages): tensorflow (v2.11.0) -> Keras API

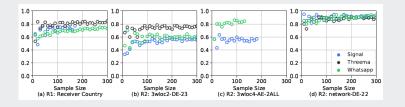
[https://www.tensorflow.org/api_docs/python/tf/keras]

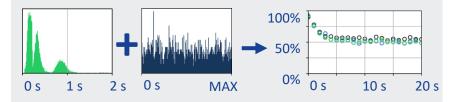


Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

25 Theodor Schnitzler LASER 2023 | San Diego, CA, USA | March 03, 2023

EVALUATION RUNS


Parameter Tuning

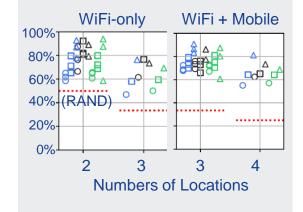

Convergence Analysis

Varying sample sizes – number of messages

Countermeasures Simulation

Adding random maximum delays to data

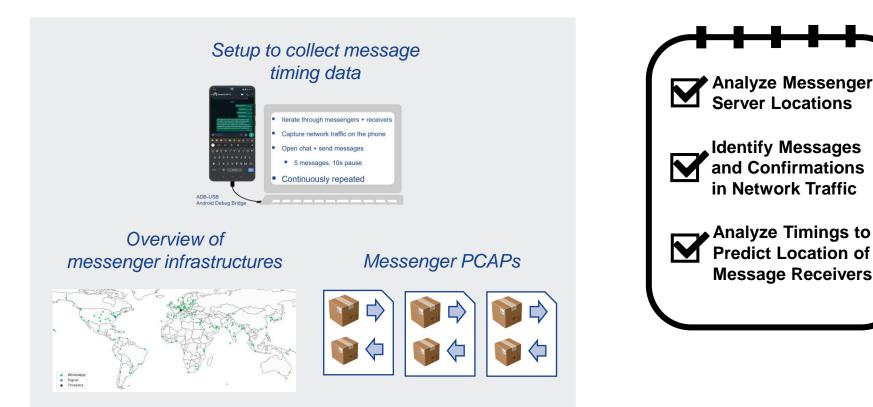
Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers


26 Theodor Schnitzler

NDSS RECAP


RESULTS OVERVIEW

Device-at-Location (R2)


Network Connection (R2)

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

27 Theodor Schnitzler

DISCUSSION

Analyze Messenger Server Locations

Identify Messages

and Confirmations

Predict Location of

Message Receivers

in Network Traffic

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract User Locations in Instant Messengers

28 Theodor Schnitzler

Theodor Schnitzler, Katharina Kohls, Evangelos Bitsikas, Christina Pöpper Hope of Delivery: Extracting User Locations from Mobile Instant Messengers NDSS 2023 | The Network and Distributed System Security Symposium

MEASURING MESSENGERS: ANALYZING INFRASTRUCTURES AND MESSAGE TIMINGS TO EXTRACT USER LOCATIONS IN INSTANT MESSENGERS

LASER 2023 | Learning from Authoritative Security Experiment Results Workshop San Diego, CA, USA | March 03, 2023

Theodor Schnitzler

theodor.schnitzler@tu-dortmund.de

🄰 @the0retisch

Research Center Trustworthy Data Science and Security, Germany @rctrustworthy

